

Faculty of Electrical Engineering and Information Technology Institute of Electromechanical and Electronic Design

Robust Design and Optimization of Thick Film Accelerometers in COMSOL Multiphysics with OptiY

Holger Neubert, Alfred Kamusella, The-Quan Pham

European COMSOL Conference 2007

Outline

- 1. Concept of Tolerance Analysis with OptiY
- 2. Thick Film Accelerometer
- 3. Nominal Optimization
- 4. Tolerance Analysis
- 5. Probabilistic Design
- 6. Conclusions

Virtual Design Process

- Design parameters must be specified so that all specified requirements are met
- Variability and uncertainty of design parameters (tolerances) caused by:
 - Manufacturing inaccuracy
 - Process uncertainty
 - Scattering of material properties
 - Environmental influences
 - Abrasion
 - Human factors
- This produces variability and uncertainty of performance, functional variables, output parameters, and rejections

Involving Tolerances into the Design Optimization

- Distributed input parameters
- Deterministic simulation model, e.g.:
 - Analytic model
 - Lumped element model
 - FE-model
 - ...
- Output distributions

Methods of Computation of Output Distributions (implemented in OptiY)

- Monte-Carlo methods
- Analytic methods:
 - Second Order Analysis (SOA)
 - Reduced SOA (RSOA)

$$f = f_{0} + \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} (x_{j} - x_{0}) + \frac{1}{2} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j}^{2}} (x_{j} - x_{0})^{2}$$

Methods of Optimization (implemented in OptiY)

- Grid search
- Hooke-Jeeves method
- Evolutionary algorithms

Steps in Tolerance Analysis and Optimization

- Nominal Optimization ⇒ Set of design parameters for an optimal function
- System Failure Analysis ⇒ Rejection Probability caused by tolerances
- Sensitivity Analysis ⇒ Importance of the tolerances to the function
- Design for Minimal Rejections
 ⇒ Set of design parameters for an optimal function with regard to the tolerances
- Design for Robustness ⇒ Set of design parameters for minimized scattering of the function

2. Thick Film Accelerometer

Working Principle

- Elements:
 - Seismic mass M
 - Leaf springs S
 - Bonded frame F
 - Piezo-Resistors P
 - Measuring Bridge
- Sensitive for acceleration in zdirection
- Cross sensitive for accelerations in x-, y-direction

8/19

2. Thick Film Accelerometer

Working Model

- Made of Low Temperature Cofired Ceramics (LTCC)
- Manufactured at the Fraunhofer-Institute for Ceramic Technologies and Systems, Dresden, Germany
- Characterization by a vibration exciter

9/19

2. Thick Film Accelerometer

COMSOL Multiphysics Model

- Excitation far from resonance ⇒ static structural mechanics model
- Plane symmetry ⇒ one half sensor is modeled
- Linear material, small deformations
- Acceleration as a volume force
- Lower boundary of the frame is fixed
- 40.000 DOF's

H. Neubert, A. Kamusella, T.-Q. Pham: Robust Design and Optimization of an Accelerometer

10 / 19

2. Thick Film Accelerometer

COMSOL Multiphysics Model

- Mean normal strain in the piezo-resistors measures ΔR
- Solved for:
 - Sensitivity S to acceleration in z-direction
 - cross sensitivity CS to acceleration in y-direction
 - First resonance frequency f_R

$$\frac{\Delta R}{R} = e_{ym} \cdot k$$

$$S = \frac{U_b}{U_s \cdot a_z} = \frac{\Delta R}{2R \cdot a_z} = \frac{e_{ym} \cdot k}{2a_z}$$

$$CS = \frac{U_b}{U_s \cdot a_y} = \frac{\Delta R}{2R \cdot a_y} = \frac{e_{ym} \cdot k}{2a_y}$$

2. Thick Film Accelerometer

Coupling of OptiY and COMSOL Multiphysics

European COMSOL Conference 2007

3. Nominal Optimization

Input Parameters for optimization:

- Length L_{spr} and width W_{spr} of the leaf springs
- Length L_m and width W_m of the seismic mass
- Length L_{pr} of the piezo-resistor
- Distance B_{pr} between the piezo-resistor and the frame

Output Parameters for Optimization:

- Sensitivity *S*
- Rel. cross sensitivity $CS_{rel} = CS / S$
- First resonance frequency f_R

 \Rightarrow find maximum, 50 $\mu V/(V^{\star}g)$ expected

- \Rightarrow constrained [0; 2%]
- \Rightarrow constrained [230 Hz; 260 Hz]

3. Nominal Optimization

Optimization Process

Function variables iteration process

3. Nominal Optimization

Performance Parameters:

Funtional Parameter	Constraint	Start Value	Optimal Value
Sensitivity	find maximum	27,6 μV/(V*g)	47,6 μV/(V*g)
Relative Cross Sensitivity	[0; 2%]	1,76 %	1,8 %
1. Resonance Frequency	[230 Hz; 260 Hz]	293,7 Hz	230,0 Hz

4. Tolerance Analysis

System Failure Analysis

European COMSOL Conference 2007

5. Probabilistic Design

Minimizing Rejections (Design for Minimum Rejections)

European COMSOL Conference 2007

5. Probabilistic Design

European COMSOL Conference 2007

5. Probabilistic Design

Performance Parameters:

Funtional Parameter	Constraint	Start Value	Optimal Value	Robust Value
Sensitivity	find maximum	27,6 μV/(V*g)	47,6 μV/(V*g)	46,4 μV/(V*g)
Relative Cross Sensitivity	[0; 2%]	1,76 %	1,8 %	1,8 %
1. Resonance Frequency	[230 Hz; 260 Hz]	293,7 Hz	230,0 Hz	234,0 Hz

6. Conclusions

- OptiY and COMSOL Multiphysics are easy to connect at the script interface
- OptiY tool allows to perform different numerical experiments, e.g.
 - Nominal optimization
 - Tolerance analysis (sensitivity analysis, failure probability)
 - Probability based design optimization (design for minimal rejections, design for robustness)
- Solution times (COMSOL model requires 5 minutes to solve, 3 tolerances):
 - Nominal optimization: 1 day
 - Tolerance analysis: 1 hour
 - Probability based design optimization: 1 week
- Probability based design was performed for an thick film accelerometer